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Abstract

The monodomain model is widely used in in-silico cardiology to describe

excitation propagation in the myocardium. Frequently, operator splitting is

used to decouple the stiff reaction term and the diffusion term in the mono-

domain model so that they can be solved separately. Commonly, the diffusion

term is solved implicitly with a large time step while the reaction term is

solved by using an explicit method with adaptive time stepping. In this work,

we propose a fully explicit method for the solution of the decoupled mono-

domain model. In contrast to semi-implicit methods, fully explicit methods

present lower memory footprint and higher scalability. However, such

methods are only conditionally stable. We overcome the conditional stability

limitation by proposing a dual adaptive explicit method in which adaptive time

integration is applied for the solution of both the reaction and diffusion terms.

We perform a set of numerical examples where cardiac propagation is simu-

lated under physiological and pathophysiological conditions. Results show that

the proposed method presents preserved accuracy and improved computa-

tional efficiency as compared to standard operator splitting-based methods.
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1 | INTRODUCTION

Computational modeling and simulation is widely used in cardiac electrophysiology to gain more insight into the mech-
anisms underlying the heart's electrical activity, predict unfavorable responses in the presence of disease or identify
novel therapeutic targets. Propagation of action potential (AP) waves in the myocardium can be simulated by solving a
system of partial differential equations (PDEs) known as the bidomain model.1 The bidomain model considers the car-
diac tissue as a continuum of two anisotropic compartments describing the intracellular and extracellular spaces.
Assuming equal anisotropy ratios for the intracellular and extracellular spaces, the bidomain model can be reduced to
the simplified monodomain model.2 In situations where the currents in the extracellular domain have little influence
on cardiac transmembrane potential and ionic currents, the monodomain model can produce realistic activation pat-
terns and transmembrane potential values with less computational cost than the bidomain model.3

The monodomain model is described by a single reaction–diffusion PDE for the transmembrane potential across the
myocardium, while the extracellular potential can be computed from another PDE once the transmembrane potential
has been solved. In the reaction–diffusion PDE, the reaction term describes the generation of the cellular AP and the
diffusion term describes its propagation in the tissue. Realistic cardiac cell models are composed of a large set of stiff
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ordinary differential equations (ODEs) to describe the temporal evolution of the ionic concentrations and gating vari-
ables of the cell. Solving stiff ODE models can be time consuming, especially for large scale problems, since a small time
integration step is required to ensure numerical stability. The operator splitting technique4 can be used to decouple the
stiff reaction term and the diffusion term. In this way, a larger time step can be used to solve the diffusion term inde-
pendently of the reaction term, which may be solved adaptively using a small time step.5,6

Commonly, the decoupled reaction–diffusion system is solved by employing a semi-implicit scheme. The stiff reac-
tion term is integrated using an explicit time integration method (e.g., forward Euler, Rush–Larsen7) whereas the diffu-
sion term is solved using an implicit time integration method (e.g., backward Euler, Crank–Nicolson). Implicit time
integration methods are popular for their unconditional stability. However, they require solving a system of equations
at each time step, which makes them more complex to implement and harder to parallelize than explicit methods.
Explicit methods, on the other hand, are only conditionally stable. Yet attractive, explicit methods are impractical for
large scale problems where a high mesh resolution is required. This is so because a very small time step is required to
ensure stability, as with decreasing mesh spacing the upper bound of the time step is decreased too.8

In this work, we identify a simple, yet meaningful, realization that allows overcoming the conditional stability limita-
tion of the explicit time integration scheme. Once the reaction and diffusion terms of the monodomain model are
decoupled by application of the operator splitting technique, we propose a dual adaptive explicit time integration (DAETI)
method where both the reaction and diffusion terms are solved explicitly with a different adaptive scheme in each case.
Since most of the computational burden is associated with the solution of the reaction term, the overhead of the adaptive
solution of the diffusion term is minimum. The structure of the article is as follows. In Section 2, we describe the DAETI
algorithm. In Section 3, we compare the accuracy and efficiency of the proposed method against the standard method with
adaptive time integration for the reaction term only and against the method without any time step adaptation. The com-
parison is performed for two-dimensional (2D) and three-dimensional (3D) problems of cardiac electrophysiology in both
health and disease. In Section 4, we discuss our findings and in Section 5, we present the concluding remarks.

2 | DUAL ADAPTIVE EXPLICIT TIME INTEGRATION

Propagation of the cardiac AP was simulated by using the monodomain model given by:

∂V=∂t= − Iion Vð Þ=C+=� D=Vð Þ inΩ
n� D=Vð Þ=0 in ∂Ω

ð1Þ

where ∂V/∂t is the time derivative of the transmembrane potential, Iion is the total ionic current, C denotes the cell
capacitance per unit surface area and D is the diffusion tensor. Ω and ∂Ω denote the domain of interest and its bound-
ary, respectively, and n is the outward unit vector normal to ∂Ω.

Employing the operator splitting method,4 Equation (1) can be written as:

∂V=∂t= − Iion Vð Þ=C inΩ ð2aÞ

∂V=∂t==� D=Vð Þ inΩ ð2bÞ

n� D=Vð Þ=0 in ∂Ω ð2cÞ

Following Strang's operator splitting, time integration of the set of Equation (2) for the time interval [0, T] using a
time step dt is performed in three steps (I–III). Taking the solution at a given time t as the initial condition, adaptive
integration is applied in step I to solve the diffusion term [Equations (2b) and (2c)] with time step dt/2. Using the results
of step I as initial condition, adaptive integration for the reaction term (ODEs for ionic concentrations and gating vari-
ables used in the computation of Iion(V) together with Equation (2a)] is applied at step II for time step dt. Using the
results of II, the iteration terminates by integrating again the diffusion term for time step dt/2 in step III. In practice,
steps I and III can be combined into only one step (denoted as step B), except for the initial and final steps of the inte-
gration in the interval [0, T]. Step II is denoted as step A.
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In our proposed dual adaptive explicit time integration (DAETI) method, similarly to the standard adaptive time inte-
gration method,4 the reaction term integration in step II was performed by using the Rush–Larsen and forward Euler
methods with adaptive time step dtar = dt/k, where the parameter k was defined to be an integer so as to keep steps A
and B, corresponding to the reaction and diffusion terms, synchronized every time step dt. The value of k was selected in
the range [1,kmax]. The upperbound kmax was obtained as kmax = bdt/dt0c, where dt0 is the maximum value of the time
step that guarantees numerical stability of the cell electrophysiology model. In each iteration, the value of the parameter k
was calculated by k= k0 + bj∂V=∂tjc, where ∂V/∂t is the time derivative of the AP at the previous iteration. For ∂V/∂t>0
(e.g., steep gradient during upstroke), we chose k0 = 5 to ensure safe propagation of the wave front. For ∂V/∂t≤ 0
(e.g., smooth gradient during repolarization), we chose k0 = 1 to avoid zero-division during the calculation of dtar. If k>
kmax, then k = kmax. For a more detailed explanation on the choice of k0, we refer the reader to Reference 4.

The adaptive time integration of the diffusion term in steps I and III was performed using the forward Euler method
with time step dtad = dt/2l, where l= bdt=2dtsc if dt/2> dts and l = 1, otherwise. A stable diffusion time step dts was
obtained by the Gerschgörin theorem9:

dts =0:9 min
i=1,…,n

mii

kii +
Pn
j=1

j≠i

kij
�� ��

2
666666664

3
777777775
: ð3Þ

where mij, kij are the elements of the i-th row and j-th column of the mass and stiffness matrices, respectively, for the
Finite Element approximation of Equation (2b). The multiplication factor 0.9 is a safety factor to ensure numerical sta-
bility for the estimated time step. When dt/2> dts, the adaptive integration of the diffusion term ensures numerical sta-
bility, while when dt/2≤ dts, the DAETI method is reduced to the standard operator splitting-based integration.

3 | EVALUATION OF DUAL ADAPTIVE EXPLICIT TIME INTEGRATION

To evaluate the accuracy and efficiency of the DAETI method we performed simulations under health and disease con-
ditions considering 2D atrial and ventricular tissue sheets, a 3D ventricular cuboid and a realistic biventricular geome-
try. We compared the simulation results obtained by DAETI with simulation results obtained by the operator splitting
technique with no adaptive integration (OST) and by OST with adaptive integration of the reaction term (OSTAR). Both
the reaction and diffusion terms in OST and OSTAR were solved explicitly using the forward Euler method as in
DAETI.

The time step used in simulations with the OST method was dt = 0.005 ms for atrial and dt = 0.01 ms for ventricular
electrophysiology. The use of the Rush-Larsen method for the integration of ionic gating variables allowed to obtain sta-
ble solutions with the selected time steps. We validated the obtained solutions against the solutions of the cell model
implementations of the CellML repository using MATLAB's adaptive ODE15s method.10 The respective time integra-
tion steps used in DAETI were dt = 0.05 ms and dt = 0.1 ms (i.e., 10× larger than OST) for atrial and ventricular simula-
tions. In OSTAR, dt = 0.05 ms and dt = 0.1 ms were used for coarse mesh discretizations where dts≥ dt. For fine mesh
discretizations where dts< dt, dts was used as the time integration step.

Simulations were performed using a multithreaded implementation of the Finite Element Method using ELECTRA,
an in-house software implementing the Finite Element Method and the Meshfree Mixed Collocation method11-13 for
solving the monodomain model. In this work, we used the Finite Element implementation. All simulations were per-
formed on a laptop with Intel® Core™ i7-4720HQ CPU and 16 GB of RAM.

3.1 | Electrical propagation in 2D cardiac tissues

AP propagation in 5× 5 cm tissue sheets was simulated for T = 500 ms after achieving steady-state conditions at a pac-
ing cycle length of 1000 ms. A stimulus of 1 ms duration and twice diastolic threshold amplitude was delivered at the
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left side of the tissue (X = 0 cm) at time t = 50 ms. 4-node regular isoparametric elements with a spacing step of
h = 100μm were used. Homogeneous atrial and ventricular tissues were considered. In the case of the atrial tissue, cel-
lular electrophysiology was represented by the Maleckar et al. human AP model.14 In the case of the ventricular tissue,
cellular electrophysiology was represented by the O'Hara et al. human epicardial AP model.15 Fiber orientation was
considered parallel to the X-axis for both atrial and ventricular simulations. The tissue diffusion coefficient in the longi-
tudinal direction was d0 = 0.0035 cm2/ms for atrial and d0 = 0.0017 cm2/ms for ventricular tissue, with the transverse-
to-longitudinal ratio being ρ = 0.2. The critical value for the diffusion time step dts was estimated using Equation (3),
rendering a value of dts = 0.006 ms for the atrial tissue simulation and dts = 0.013 ms for the ventricular tissue simula-
tion. For comparison, the time step limit for satisfying the Courant–Friedrichs–Lewy condition was dtCFL = 0.19ms for
atrial tissue and dtCFL = 0.17ms for ventricular tissue.

The APs at the center of the tissue sheet calculated using the three evaluated methods are shown in Figure 1 for
both atrial and ventricular tissue simulations. As can be observed from the figure, the absolute differences in transmem-
brane potential between DAETI and any of the other two methods were minimal for both simulations, being within
0.18 mV for the atrial tissue and 0.09 mV for the ventricular tissue. For the atrial tissue simulation, the longitudinal
conduction velocity (CV) obtained using the DAETI method was CV = 0.056 cm/ms, while CV values for OSTAR and
OST methods were CV = 0.055 cm/ms and CV = 0.053 cm/ms, respectively. AP duration at 90% repolarization (APD90)
was APD90 =208.0 ms for DAETI, APD90 =207.6 ms for OSTAR, and APD90 =209.0 ms for OST. For the ventricular tis-
sue simulation, we obtained CV = 0.060 cm/ms and APD90 = 227 ms for the three time integration methods. Total exe-
cution time was 21 min for DAETI, 95 min for OSTAR and 103 min for OST.

3.2 | Electrical propagation in a 2D cardiac tissue with fibrosis

We next simulated AP propagation in a 5× 5 cm ventricular epicardial tissue sheet, as in subsection 3.1, but in this
case we included 10% diffusive fibrosis by randomly distributing fibroblasts across the tissue following a uniform dis-
tribution as in Reference 16. Human ventricular epicardial cell electrophysiology was represented by the O'Hara
et al. model, while fibroblast electrophysiology was represented by the MacCannell active fibroblast model.17 The tis-
sue was stimulated by applying a cross-field stimulation (S1–S2) protocol to generate a sustained spiral wave. The
first stimulus (S1) was applied at the left side of the tissue (X = 0 cm) at time t = 50 ms, when the tissue coupling epi-
cardial cells and fibroblasts was stabilized at a pacing cycle length of 1000 ms. A second stimulus S2 was applied at
the bottom left corner of the tissue (X = 0− 1.25 cm, Y = 0− 2.50 cm) at time t = 200 ms. The time for application of
the S2 stimulus was chosen so that the S2 wave front interacted with the S1 wave tail and could lead to the genera-
tion of a spiral wave.

FIGURE 1 APs at the center of a 5× 5 cm human tissue sheet.

(A) AP for atrial tissue simulation and (B) AP for ventricular tissue

simulation using OST, OSTAR, and DAETI methods
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We performed simulations on six meshes with 4-node regular elements and varying spacing steps ranging from
h = 100 to h = 200 μm. The computational efficiency of DAETI was compared against that of OSTAR and OST. The
critical diffusion time step dts was obtained by Equation (3) for each mesh. The diffusion coefficient was d0m = 0.002
cm2/ms between epicardial myocytes and d0f = 0.00066 cm2/ms between fibroblasts as well as for the interaction
between myocytes and fibroblasts. The transverse-to-longitudinal conductivity ratio was set to ρ = 0.25. The characteris-
tics of the simulated meshes and the corresponding values of dts are provided in Table 1, as well as the dtCFL, and the
mean absolute difference between DAETI–OST (j �DAETI−OST j) and OSTAR–OST (j �OSTAR−OST j).

Transmembrane voltage in the simulated tissues after application of the cross-field stimulation protocol is presented
in Figure 2 for the mesh with h = 100 μm. The three methods rendered highly similar voltage values, being the absolute
difference between aligned APs below 0.41 mV, with the three of them presenting the same characteristics of the gener-
ated spiral waves at the different time instants along the simulation time.

The total execution time for a simulation time of T = 500 ms is given in Figure 3A for the three evaluated methods.
As can be observed from Figure 3A, the computational time required by DAETI was notably lower than that of OST.
When compared to OSTAR, DAETI was associated with similar computational times for coarse meshes but with
remarkably lower times for fine meshes. Furthermore, Figure 3B presents the temporal evolution of the adaptive time

TABLE 1 Summary of mesh characteristics used in the simulation of a 2D fibrotic tissue under cross-field stimulation

h (μm) Nodes Elem. dts (ms) dtCFL (ms) j �DAETI−OST j (mV) j �OSTAR−OST j (mV)

200 63001 62500 0.113 0.377 0.193 0.156

180 77284 76729 0.091 0.330 0.165 0.124

160 97969 97344 0.072 0.284 0.143 0.115

140 128164 127449 0.059 0.248 0.131 0.112

120 173889 173056 0.044 0.207 0.105 0.084

100 251001 250000 0.028 0.173 0.092 0.071

Note: h denotes the mesh spacing, dts is the critical value for the diffusion time integration step, dtCFL is the upper limit for satisfying the CFL condition, j
�DAETI−OST j is the mean absolute difference between DAETI and OST solutions, and j �OSTAR−OST j is the mean absolute difference between OSTAR and

OST solutions.

FIGURE 2 Voltage snapshots in a 2D fibrotic tissue sheet in response to a cross-stimulation protocol. Spiral waves of the same

characteristics can be observed for DAETI (top), OSTAR (middle) and OST (bottom) at different simulated time instants
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step dt over T = 500 ms for the mesh with h = 200 μm. As can be observed from the figure, dt for OSTAR was bounded
by the critical time step dts = 0.045 ms, while DAETI was solved more efficiently using up to dt = 0.1 ms.

3.3 | Electrical propagation in a 3D cuboid benchmark geometry

In this example, we considered the propagation of an electrical impulse in a homogeneous 3D cuboid of human ventric-
ular tissue. We followed the simulation protocol described in Reference 18, in which a common benchmark problem
for verification of cardiac tissue electrophysiology simulators was defined. The cuboid had dimensions 3× 7× 20 mm
with cardiac fibers parallel to the Z axis. It was considered to be composed of human ventricular epicardial tissue, with
the Ten Tusscher et al.19 model used to describe cellular electrophysiology. The value of the diffusion coefficient in the
longitudinal direction was set to d0 = 0.00115 cm2/ms and the transverse-to-longitudinal ratio was set to ρ = 0.12. A
stimulus of 2 ms duration and 50 mA amplitude was delivered at a cube with dimensions 1.5× 1.5× 1.5 mm located at
corner P1 (Figure 4).

In Reference 18, Niederer et al. reported activation times at the eight corners (P1 – P8) and at the center (C) of the
cuboid for 11 different electrophysiology solvers. Results in that study were reported for three spatial discretizations,
h = {0.1,0.2,0.5} mm, and three integration time steps, dt = {0.005,0.010,0.050} ms, while dts = {0.230,0.037,0.009} ms
and dtCFL = {2.7,0.5,0.2} ms. Here, we performed simulations for the three spatial discretizations using the DAETI
method with dt = 0.1 ms. In Table 2, the activation times obtained by DAETI are reported together with the average
activation times produced by all the solvers tested in Reference 18 for comparison purposes. As it can be observed, acti-
vation times obtained with DAETI for the different spatial discretizations were in good agreement with the average acti-
vation times reported in Reference 18 and, in all cases, within the ranges reported for the different solvers.

FIGURE 3 (A) Execution time for DAETI (red circle), OSTAR (blue square) and OST (black diamond) evaluated in a 2D fibrotic tissue

with 4-node regular element meshes and varying space steps ranging from h = 100 to h = 200μm, (B) temporal evolution of adaptive time

step for DAETI (red) and OSTAR (blue)

FIGURE 4 Activation time map for the 3D cuboid benchmark

geometry described in Reference 18 with space discretization

h = 0.1 mm
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3.4 | Electrical propagation in a 3D cardiac biventricular geometry

We further compared the DAETI method with the OSTAR and OST methods in the simulation of AP propagation in a
3D biventricular swine geometry considering myocardial infarction and left bundle branch block (LBBB) conditions. A
tetrahedral mesh representation of the biventricular swine anatomy (273919 nodes, 1334218 elements) was made avail-
able from the CRT-EPiggy19 challenge.20,21 It was part of a swine model dataset of LBBB for experimental studies of
cardiac resynchronization therapy.22,23 A homogeneous diffusion coefficient d0 = 0.002 cm2/ms was set across the car-
diac tissue, with a transverse-to-longitudinal conductivity ratio of ρ = 0.25. For the myocardial infarction simulation,
the scar region was located at the left anterior part of the left ventricle's apex and was assumed as zero conductive tis-
sue. The scar border zone was not considered since it was not available in the anatomical model. The diffusion coeffi-
cient for the connective tissue at the base of the biventricular anatomy was set to d0 = 0.00066 cm2/ms. The
electrophysiology of connective tissue was represented by the MacCannell active fibroblast model. For the rest of the
biventricular geometry, the O'Hara et al. cell model was used. Transmural heterogeneities were included by considering
endocardial, midmyocardial and epicardial cells across the ventricular wall at 0.5:0.2:0.3 ratio. The orientation of the
myocardial fibers was computed using a rule-based method.24

A Purkinje conduction system was generated for the biventricular model by using a fractal-tree generation algo-
rithm.25 Purkinje-myocyte junctions (PMJs) on the endocardial surface were obtained by applying a range-search algo-
rithm using a spherical search area with radius R = 2 mm, centered at each end node of the conduction system. Rather
than considering AP propagation in the conduction system, periodic stimuli of 1 ms duration and twice diastolic thresh-
old in amplitude were applied to each PMJ at a cycle length of 1000 ms. To ensure realistic activation at baseline
conditions,26 we divided PMJs into four groups: left apex - LA; left base - LB; right apex - RA; right base - RB. LA-PMJs
were activated at time t = 0 ms, while the activation of LB-PMJs, RA-PMJs, and RB-PMJs was delayed by 7, 4, and
11 ms, respectively. Under LBBB conditions, stimulation at LA-PMJs and LB-PMJs was blocked. After achieving
steady-state, the total simulation time was T = 500 ms for both myocardial infarction and LBBB simulations. The criti-
cal value for the diffusion time step was dts = 0.034 ms, while dtCFL = 0.16 ms.

For both simulations, the results obtained by DAETI and OSTAR were compared against the results obtained by the
OST simulation, taken here as a reference, by computing the normalized root mean square error for both the local acti-
vation time (LAT), denoted by eLAT, and APD90, denoted by eAPD:

eZ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i=1

ûi−uið Þ2
s

umax−umin
, ð4Þ

where the subindex Z stands for LAT or APD, N is the number of nodes in the mesh, u denotes the reference nodal
value for either LAT or APD90 obtained by OST and û denotes the nodal LAT or APD90 value obtained by OSTAR or
DAETI. umax and umin denote the maximum and minimum values of u across all nodes in the tissue.

Using the DAETI method, eLAT was 4.3E-3 and 4.4E-3 for infarction and LBBB simulations, respectively, whereas
for the OSTAR method the corresponding eLAT values were 3.0E-3 and 2.6E-3. In the case of eAPD, the values for DAETI
were 1.6E-3 and 7.8E-4 for infarction and LBBB simulations, while for OSTAR these were 1.2E-4 and 7.1E-4.

TABLE 2 Activation times at the

corners (P1–P8) and at the center (C) of

the 3D cuboid benchmark geometry

defined in Reference 18

h (mm) P1 P2 P3 P4 P5 P6 P7 P8 C

DAETI activation times (ms)

0.5 1 49 22 58 94 109 98 111 54

0.2 1 31 11 35 35 51 39 54 25

0.1 1 29 8 31 27 41 29 43 20

Average activation times (ms) in Reference 18

0.5 1 48 27 55 106 118 107 118 55

0.2 1 35 11 37 39 53 41 54 25

0.1 1 31 9 33 28 43 30 44 20
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Mean LAT was 27.2, 27.4, and 27.5 ms for DAETI, OSTAR, and OST in the infarction simulation. For LBBB simula-
tion, mean LAT was 49.3, 49.7, and 49.9 ms, respectively. Mean APD90 was 231.4 ms for infarction and 233.2 ms for
LBBB with all three methods. Figures 5 and 6 show LAT and APD90 maps for infarction and LBBB simulations. From
Figure 5, it can be appreciated that epicardial activation under LBBB occurs by wave propagation through the inter-
ventricular septum and the anterior and posterior left ventricular wall. This characteristic activation pattern is well
reproduced by the three numerical integration methods. Histograms of LAT and APD90 for infarction and LBBB simu-
lations are presented in Figure 7 as a measure of the distribution of LAT and APD90 nodal values. DAETI results were
in very good agreement with OST, as confirmed by the overlapping of the histrograms.

In terms of computational efficiency, the total execution time at infarct conditions was 25.4 min for DAETI,
63.0 min for OSTAR, and 106.2 min for OST. Under LBBB conditions, the total execution time was 23.4 min for DAETI,
62.4 min for OSTAR, and 102.6 min for OST. Using the DAETI method we obtained a speed-up of 4.2× at infarct and
4.4× under LBBB with respect to OST. The speed-up obtained by OSTAR with respect to OST was 1.7× at infarct and
1.7× at LBBB conditions.

4 | DISCUSSION

We proposed a DAETI method to solve the monodomain model in cardiac electrophysiology. Our method is an exten-
sion of the operator splitting technique with adaptive reaction (OSTAR) where adaptive explicit integration is applied
for the integration of the diffusion term too. Our approach is simple, yet efficient, and provides higher computational
speed as compared to OSTAR. By introducing adaptive time stepping also for the explicit solution of the diffusion term,
the conditional stability limitation can be overcome with small computational overhead, since the largest part of the
required computational time is associated with the solution of the decoupled reaction term. The combination of adap-
tive time integration for both the diffusion and reaction terms in the DAETI method allows achieving a computational
speed-up of up to 2.7× in 2D tissue simulations and 4.4× in 3D biventricular simulations when compared to simulations
performed with OST without time adaptivity. Using adaptive integration only for the reaction term in the OSTAR
method, the computational speed-up is limited to 1.4× and 1.8× for the same 2D and 3D simulations. Based on these
findings, we can conclude that the DAETI method is notably more computationally efficient than OSTAR, especially
for 3D realistic models.

The DAETI method demonstrated good numerical accuracy compared to OST without time adaptivity. In 2D tissue
simulations, differences in LAT and APD90 calculated at the center of the tissue were found only for the atrial tissue
simulation. Percentage difference for CV was up to 5.6% (0.056 cm/ms in DAETI, 0.053 cm/ms in OST) and for APD90

was up to 0.5% (208 ms in DAETI, 209 ms in OST). These results were as expected, since small voltage differences in

FIGURE 5 LAT maps at baseline (top) and under LBBB

conditions (bottom) for a simulation using DAETI (left), OSTAR

(middle) and OST (right) methods

FIGURE 6 APD90 maps at baseline (top) and under LBBB

conditions (bottom) for a simulation using DAETI (left), OSTAR

(middle) and OST (right) methods
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the AP upstroke due to numerical approximation contribute mainly to CV and not to APD90, which is calculated from
the time point associated with maximum AP derivative and it is largely controlled by the recovery process.4 The OSTAR
method led to increased CV by 3.8% as compared to OST. From these findings we can conclude that the CV increase in
DAETI due to the adaptive integration of the diffusion term is 1.8%. In Reference 4, the increase in CV due to time
adaption for the reaction term is less than 2% even for a time integration step as large as dt = 0.4 ms. In our study, the
increase in CV is larger even if the time integration step dt = 0.1 ms is smaller. It should, however, be noted that simu-
lations in Reference 4 are performed in 1D cables, while ours correspond to 2D and 3D tissues, which suggests that the
increase in CV associated with adaptive integration of the reaction term may be larger for higher dimensions.

In the simulation of the 3D cuboid benchmark we observed that DAETI led to activation time measurements in very
good agreement with state-of-the-art electrophysiology solvers.18 Using biventricular geometries, very good agreement
was found between DAETI and either OSTAR or OST in terms of both LAT and APD90. Taking OST as a reference,
both DAETI and OSTAR rendered error values of eLAT and eAPD of the order of E-3 and E-4, respectively, at infarct and
LBBB conditions. The activation pattern characteristic of LBBB conditions, as well as the longer time required to fully
complete ventricular activation under these conditions, were well represented by DAETI, OSTAR and OST, providing
results in agreement with previously published data.23,27

The findings of this study confirmed that the proposed DAETI method can be effectively used to simulate cardiac
electrophysiology under physiological and pathophysiological conditions, with similar numerical accuracy and remark-
ably higher efficiency than OSTAR, especially for 3D simulations. Importantly, by applying adaptive integration to the
explicit solution of the diffusion term, the conditional stability limitation of the explicit schemes was overcome. For all
the above characteristics, the DAETI method is suggested as an attractive technique for the solution of large scale prob-
lems. Since explicit schemes are highly parallelizable, we expect to observe a significantly higher efficiency gain in a
parallel computing architecture implementation.

FIGURE 7 Histogram showing the distributions of nodal values using DAETI (blue), OSTAR (orange) and OST (green) for (A) LAT

under myocardial infarction conditions, (B) LAT under LBBB conditions, (C) APD90 under myocardial infarction conditions and (D) APD90

under LBBB conditions
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In future work, we plan to implement an MPI parallel version of the DAETI method and compare its scalability
against semi-implicit methods in large scale 3D applications. Furthermore, we aim to use DAETI to explore in depth
the role of fibrosis in the generation of arrhythmia. While in this study we considered only diffuse fibrosis, which is
common in patients with congenital heart disease28 or heart failure,29 in future works we plan to investigate the rela-
tionship between both diffuse and patchy fibrosis with arrhythmia generation, with a particular interest in modeling
cardiac activity following myocardial infarction.

5 | CONCLUSION

A DAETI method is proposed to solve the monodomain model in 2D and 3D cardiac electrophysiology simulations.
DAETI is based on the simple yet efficient realization that adaptive time integration can be used for the explicit solution
of the diffusion term, on top of the reaction term, in the monodomain model after decoupling these two terms by the
operator splitting technique. In a set of 2D and 3D simulations of cardiac electrical propagation in health and disease,
the DAETI method is shown to render results of similar accuracy but improved computational efficiency than operator
splitting-based methods with and without adaptive integration of the reaction term. As a fully explicit technique, the
application of DAETI is expected to provide even higher efficiency gain in parallel implementations due to its straight-
forward parallelization and high scalability.
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